Description
Fermat’s theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.Input
Input contains several test cases followed by a line containing “0 0”. Each test case consists of a line containing p and a.
Output
For each test case, output “yes” if p is a base-a pseudoprime; otherwise output “no”.
Sample Input
3 2 10 3 341 2 341 3 1105 2 1105 3 0 0Sample Output
no no yes no yes yes题意:不是素数的数p,且a^p对p取模等于a,输出yes,其他的输出no。
直接暴力,不要打表,打表数组开不到1e9,暴力不会超时#include#include #define ll long longll Pow(ll a,ll b){ ll res=1; ll c=b; while(b>0) { if(b&1) res=res*a%c; a=a*a%c; b>>=1; } return res;}ll su(ll n){ for(ll i=2;i*i<=n;i++) { if(n%i==0) return 0; } return 1; }int main(){ ll p,a,flag=0; while(~scanf("%lld%lld",&p,&a)) { if(a==0&&p==0) break; if(su(p)==0) flag+=1; if(flag!=0&&Pow(a,p)==a) printf("yes\n"); else printf("no\n"); flag=0; } return 0;}